Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Ann Biomed Eng ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459195

ABSTRACT

SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.

2.
Biosens Bioelectron ; 228: 115196, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36921387

ABSTRACT

Antibody profiling is a fundamental component of understanding the humoral response in a wide range of disease areas. Most currently used approaches operate by capturing antibodies onto functionalised surfaces. Such measurements of surface binding are governed by an overall antibody titre, while the two fundamental molecular parameters, antibody affinity and antibody concentration, are challenging to determine individually from such approaches. Here, by applying microfluidic diffusional sizing (MDS), we show how we can overcome this challenge and demonstrate reliable quantification of alloantibody binding affinity and concentration of alloantibodies binding to Human Leukocyte Antigens (HLA), an extensively used clinical biomarker in organ transplantation, both in buffer and in crude human serum. Capitalising on the ability to vary both serum and HLA concentrations during MDS, we show that both affinity and concentration of HLA-specific antibodies can be determined directly in serum when neither of these parameters is known. Finally, we provide proof of principle in clinical transplant patient sera that our assay enables differentiation of alloantibody reactivity against HLA proteins of highly similar structure, providing information not attainable through currently available techniques. These results outline a path towards detection and in-depth profiling of humoral immunity and may enable further insights into the clinical relevance of antibody reactivity in clinical transplantation and beyond.


Subject(s)
Biosensing Techniques , Kidney Transplantation , Humans , Isoantibodies , Antibody Affinity , Microfluidics , HLA Antigens
3.
STAR Protoc ; 4(1): 102095, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853663

ABSTRACT

Conventional methods of measuring affinity are limited by artificial immobilization, large sample volumes, and homogeneous solutions. This protocol describes microfluidic antibody affinity profiling on complex human samples in solution to obtain a fingerprint reflecting both affinity and active concentration of the target protein. To illustrate the protocol, we analyze the antibody response in SARS-CoV-2 omicron-naïve samples against different SARS-CoV-2 variants of concern. However, the protocol and the technology are amenable to a broad spectrum of biomedical questions. For complete details on the use and execution of this protocol, please refer to Emmenegger et al. (2022),1 Schneider et al. (2022),2 and Fiedler et al. (2022).3.


Subject(s)
COVID-19 , Humans , Antibody Affinity , Microfluidics , SARS-CoV-2
4.
Anal Chem ; 95(2): 587-593, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36574263

ABSTRACT

Microfluidic diffusional sizing (MDS) is a recent and powerful method for determining the hydrodynamic sizes and interactions of biomolecules and nanoparticles. A major benefit of MDS is that it can report the size of a fluorescently labeled target even in mixtures with complex, unpurified samples. However, a limitation of MDS is that the target itself has to be purified and covalently labeled with a fluorescent dye. Such covalent labeling is not suitable for crude extracts such as native nanodiscs directly obtained from cellular membranes. In this study, we introduce fluorescent universal lipid labeling for MDS (FULL-MDS) as a sparse, noncovalent labeling method for determining particle size. We first demonstrate that the inexpensive and well-characterized fluorophore, Nile blue, spontaneously partitions into lipid nanoparticles without disrupting their structure. We then highlight the key advantage of FULL-MDS by showing that it yields robust size information on lipid nanoparticles in crude cell extracts that are not amenable to other sizing methods. Furthermore, even for synthetic nanodiscs, FULL-MDS is faster, cheaper, and simpler than existing labeling schemes.


Subject(s)
Fluorescent Dyes , Microfluidics , Microfluidics/methods , Cell Membrane , Fluorescent Dyes/chemistry , Lipids
5.
Sci Rep ; 12(1): 19791, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396691

ABSTRACT

The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Viral , Viral Envelope Proteins , Antiviral Agents/pharmacology , Membrane Glycoproteins/chemistry , SARS-CoV-2 , Antibodies, Monoclonal
6.
iScience ; 25(8): 104766, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35875683

ABSTRACT

The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (K A ranges: 122 ± 155, 159 ± 148, 211 ± 307 µM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination.

7.
ACS Infect Dis ; 8(4): 790-799, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35352558

ABSTRACT

Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potentially beneficial and detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be reactivated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Determining the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be disentangled by surface-based assays like enzyme-linked immunosorbent assays (ELISAs), which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high-affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory reactivation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Affinity , Humans , Microfluidics , Spike Glycoprotein, Coronavirus
8.
Lab Chip ; 21(15): 2922-2931, 2021 08 07.
Article in English | MEDLINE | ID: mdl-34109955

ABSTRACT

The ability to determine the identity of specific proteins is a critical challenge in many areas of cellular and molecular biology, and in medical diagnostics. Here, we present a macine learning aided microfluidic protein characterisation strategy that within a few minutes generates a three-dimensional fingerprint of a protein sample indicative of its amino acid composition and size and, thereby, creates a unique signature for the protein. By acquiring such multidimensional fingerprints for a set of ten proteins and using machine learning approaches to classify the fingerprints, we demonstrate that this strategy allows proteins to be classified at a high accuracy, even though classification using a single dimension is not possible. Moreover, we show that the acquired fingerprints correlate with the amino acid content of the samples, which makes it is possible to identify proteins directly from their sequence without requiring any prior knowledge about the fingerprints. These findings suggest that such a multidimensional profiling strategy can lead to the development of a novel method for protein identification in a microfluidic format.


Subject(s)
Machine Learning
9.
Biomicrofluidics ; 15(2): 024113, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33981380

ABSTRACT

Protein detection and quantification is a routinely performed procedure in research laboratories, predominantly executed either by spectroscopy-based measurements, such as NanoDrop, or by colorimetric assays. The detection limits of such assays, however, are limited to µ M concentrations. To establish an approach that achieves general protein detection at an enhanced sensitivity and without necessitating the requirement for signal amplification steps or a multicomponent detection system, here, we established a chemiluminescence-based protein detection assay. Our assay specifically targeted primary amines in proteins, which permitted characterization of any protein sample and, moreover, its latent nature eliminated the requirement for washing steps providing a simple route to implementation. Additionally, the use of a chemiluminescence-based readout ensured that the assay could be operated in an excitation source-free manner, which did not only permit an enhanced sensitivity due to a reduced background signal but also allowed for the use of a very simple optical setup comprising only an objective and a detection element. Using this assay, we demonstrated quantitative protein detection over a concentration range of five orders of magnitude and down to a high sensitivity of 10 pg mL - 1 , corresponding to pM concentrations. The capability of the platform presented here to achieve a high detection sensitivity without the requirement for a multistep operation or a multicomponent optical system sets the basis for a simple yet universal and sensitive protein detection strategy.

10.
ACS Infect Dis ; 7(8): 2362-2369, 2021 08 13.
Article in English | MEDLINE | ID: mdl-33876632

ABSTRACT

The humoral immune response plays a key role in suppressing the pathogenesis of SARS-CoV-2. The molecular determinants underlying the neutralization of the virus remain, however, incompletely understood. Here, we show that the ability of antibodies to disrupt the binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell, the key molecular event initiating SARS-CoV-2 entry into host cells, is controlled by the affinity of these antibodies to the viral antigen. By using microfluidic antibody-affinity profiling, we were able to quantify the serum-antibody mediated inhibition of ACE2-spike binding in two SARS-CoV-2 seropositive individuals. Measurements to determine the affinity, concentration, and neutralization potential of antibodies were performed directly in human serum. Using this approach, we demonstrate that the level of inhibition in both samples can be quantitatively described using the dissociation constants (KD) of the binary interactions between the ACE2 receptor and the spike protein as well as the spike protein and the neutralizing antibody. These experiments represent a new type of in-solution receptor binding competition assay, which has further potential applications, ranging from decisions on donor selection for convalescent plasma therapy, to identification of lead candidates in therapeutic antibody development, and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibody Affinity , COVID-19/therapy , Humans , Immunization, Passive , Peptidyl-Dipeptidase A/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
11.
Nat Struct Mol Biol ; 27(12): 1125-1133, 2020 12.
Article in English | MEDLINE | ID: mdl-32989305

ABSTRACT

The amyloid cascade hypothesis, according to which the self-assembly of amyloid-ß peptide (Aß) is a causative process in Alzheimer's disease, has driven many therapeutic efforts for the past 20 years. Failures of clinical trials investigating Aß-targeted therapies have been interpreted as evidence against this hypothesis, irrespective of the characteristics and mechanisms of action of the therapeutic agents, which are highly challenging to assess. Here, we combine kinetic analyses with quantitative binding measurements to address the mechanism of action of four clinical stage anti-Aß antibodies, aducanumab, gantenerumab, bapineuzumab and solanezumab. We quantify the influence of these antibodies on the aggregation kinetics and on the production of oligomeric aggregates and link these effects to the affinity and stoichiometry of each antibody for monomeric and fibrillar forms of Aß. Our results reveal that, uniquely among these four antibodies, aducanumab dramatically reduces the flux of Aß oligomers.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/antagonists & inhibitors , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/chemistry , Antibodies, Monoclonal, Humanized/chemistry , Humans , Kinetics , Models, Biological , Models, Molecular , Neuroprotective Agents/chemistry , Peptide Fragments/chemistry , Peptide Mapping/methods , Protein Aggregates/drug effects , Protein Conformation , Structure-Activity Relationship
12.
Nat Commun ; 11(1): 3469, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651386

ABSTRACT

Insertions and deletions (InDels) are frequently observed in natural protein evolution, yet their potential remains untapped in laboratory evolution. Here we introduce a transposon-based mutagenesis approach (TRIAD) to generate libraries of random variants with short in-frame InDels, and screen TRIAD libraries to evolve a promiscuous arylesterase activity in a phosphotriesterase. The evolution exhibits features that differ from previous point mutagenesis campaigns: while the average activity of TRIAD variants is more compromised, a larger proportion has successfully adapted for the activity. Different functional profiles emerge: (i) both strong and weak trade-off between activities are observed; (ii) trade-off is more severe (20- to 35-fold increased kcat/KM in arylesterase with 60-400-fold decreases in phosphotriesterase activity) and (iii) improvements are present in kcat rather than just in KM, suggesting adaptive solutions. These distinct features make TRIAD an alternative to widely used point mutagenesis, accessing functional innovations and traversing unexplored fitness landscape regions.


Subject(s)
INDEL Mutation/genetics , Evolution, Molecular , Humans , Mutagenesis/genetics , Mutagenesis/physiology , Phosphoric Triester Hydrolases/genetics , Phosphoric Triester Hydrolases/metabolism , Synthetic Biology/methods
13.
Lab Chip ; 20(15): 2663-2673, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32588855

ABSTRACT

The biological function of proteins is dictated by the formation of supra-molecular complexes that act as the basic machinery of the cell. As such, measuring the properties of protein species in heterogeneous mixtures is of key importance for understanding the molecular basis of biological function. Here, we describe the combination of analytical microfluidic tools with liquid chromatography for multidimensional characterisation of biomolecules in complex mixtures in the solution phase. Following chromatographic separation, a small fraction of the flow-through is distributed to multiple microfluidic devices for analysis. The microfluidic device developed here allows the simultaneous determination of the hydrodynamic radius, electrophoretic mobility, effective molecular charge and isoelectric point of isolated protein species. We demonstrate the operation principle of this approach with a mixture of three unlabelled model proteins varying in size and charge. We further extend the analytical potential of the presented approach by analysing a mixture of interacting streptavidin with biotinylated BSA and fluorophores, which form a mixture of stable complexes with diverse biophysical properties and stoichiometries. The presented microfluidic device positioned in-line with liquid chromatography presents an advanced tool for characterising multidimensional physical properties of proteins in biological samples to further understand the assembly/disassembly mechanism of proteins and the nature of complex mixtures.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Proteins , Electrophoresis , Lab-On-A-Chip Devices , Proteins/analysis
15.
Biochem J ; 475(1): 137-150, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29187521

ABSTRACT

Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast with the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii, which are the first dimeric DHDPR structures. The analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate-binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.


Subject(s)
Bacterial Proteins/chemistry , Dihydrodipicolinate Reductase/chemistry , Picolinic Acids/chemistry , Plant Proteins/chemistry , Vitis/enzymology , Amino Acid Motifs , Arabidopsis/chemistry , Arabidopsis/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Coenzymes/chemistry , Coenzymes/metabolism , Crystallography, X-Ray , Dihydrodipicolinate Reductase/genetics , Dihydrodipicolinate Reductase/metabolism , Gene Expression , Kinetics , Lysine/biosynthesis , Models, Molecular , NAD/chemistry , NAD/metabolism , NADP/chemistry , NADP/metabolism , Neisseria meningitidis/chemistry , Neisseria meningitidis/enzymology , Picolinic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Selaginellaceae/chemistry , Selaginellaceae/enzymology , Species Specificity , Substrate Specificity , Vitis/chemistry
16.
Lab Chip ; 18(1): 162-170, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29192926

ABSTRACT

The ability to apply highly controlled electric fields within microfluidic devices is valuable as a basis for preparative and analytical processes. A challenge encountered in the context of such approaches in conductive media, including aqueous buffers, is the generation of electrolysis products at the electrode/liquid interface which can lead to contamination, perturb fluid flows and generally interfere with the measurement process. Here, we address this challenge by designing a single layer microfluidic device architecture where the electric potential is applied outside and downstream of the microfluidic device while the field is propagated back to the chip via the use of a co-flowing highly conductive electrolyte solution that forms a stable interface at the separation region of the device. The co-flowing electrolyte ensures that all the generated electrolysis products, including Joule heat and gaseous products, are flowed away from the chip without coming into contact with the analytes while the single layer fabrication process where all the structures are defined lithographically allows producing the devices in a simple yet highly reproducible manner. We demonstrate that by allowing stable and effective application of electric fields in excess of 100 V cm-1, the described platform provides the basis for rapid separation of heterogeneous mixtures of proteins and protein complexes directly in their native buffers as well as for the simultaneous quantification of their charge states. We illustrate this by probing the interactions in a mixture of an amyloid forming protein, amyloid-ß, and a molecular chaperone, Brichos, known to inhibit the process of amyloid formation. The availability of a platform for applying stable electric fields and its compatibility with single-layer soft-lithography processes opens up the possibility of separating and analysing a wide range of molecules on chip, including those with similar electrophoretic mobilities.


Subject(s)
Electrolysis/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Animals , Electrodes , Humans , Models, Chemical , Proteins/analysis , Proteins/chemistry , Proteins/isolation & purification
17.
Anal Chem ; 86(5): 2526-33, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24517505

ABSTRACT

Directed evolution relies on iterative cycles of randomization and selection. The outcome of an artificial evolution experiment is crucially dependent on (i) the numbers of variants that can be screened and (ii) the quality of the assessment of each clone that forms the basis for selection. Compartmentalization of screening assays in water-in-oil emulsion droplets provides an opportunity to screen vast numbers of individual assays with good signal quality. Microfluidic systems have been developed to make and sort droplets, but the operator skill required precludes their ready implementation in nonspecialist settings. We now establish a protocol for the creation of monodisperse double-emulsion droplets in two steps in microfluidic devices with different surface characteristics (first hydrophobic, then hydrophilic). The resulting double-emulsion droplets are suitable for quantitative analysis and sorting in a commercial flow cytometer. The power of this approach is demonstrated in a series of enrichment experiments, culminating in the successful recovery of catalytically active clones from a sea of 1 000 000-fold as many low-activity variants. The modular workflow allows integration of additional steps: the encapsulated lysate assay reactions can be stopped by heat inactivation (enabling ready control of selection stringency), the droplet size can be contracted (to concentrate its contents), and storage (at -80 °C) is possible for discontinuous workflows. The control that can be thus exerted on screening conditions will facilitate exploitation of the potential of protein libraries compartmentalized in droplets in a straightforward protocol that can be readily implemented and used by protein engineers.


Subject(s)
Emulsions , Flow Cytometry/methods , Microfluidics
18.
Microb Cell Fact ; 12: 67, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23834731

ABSTRACT

BACKGROUND: The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements triggered by binding of the lactose isomer allolactose to the core domain of the repressor impede DNA binding and lift repression. In Nature, the ability to detect and respond to environmental conditions comes at the cost of the encoded enzymes being constitutively expressed at low levels. The readily-switched regulation provided by LacI has resulted in its widespread use for protein overexpression, and its applications in molecular biology represent early examples of synthetic biology. However, the leakiness of LacI that is essential for the natural function of the lac operon leads to an increased energetic burden, and potentially toxicity, in heterologous protein production. RESULTS: Analysis of the features that confer promiscuity to the inducer-binding site of LacI identified tryptophan 220 as a target for saturation mutagenesis. We found that phenylalanine (similarly to tryptophan) affords a functional repressor that is still responsive to IPTG. Characterisation of the W220F mutant, LacIWF, by measuring the time dependence of GFP production at different IPTG concentrations and at various incubation temperatures showed a 10-fold reduction in leakiness and no decrease in GFP production. Cells harbouring a cytotoxic protein under regulatory control of LacIWF showed no decrease in viability in the early phases of cell growth. Changes in responsiveness to IPTG observed in vivo are supported by the thermal shift assay behaviour of purified LacIWF with IPTG and operator DNA. CONCLUSIONS: In LacI, long-range communications are responsible for the transmission of the signal from the inducer binding site to the DNA binding domain and our results are consistent with the involvement of position 220 in modulating these. The mutation of this single tryptophan residue to phenylalanine generated an enhanced repressor with a 10-fold decrease in leakiness. By minimising the energetic burden and cytotoxicity caused by leakiness, LacIWF constitutes a useful switch for protein overproduction and synthetic biology.


Subject(s)
Lac Repressors/genetics , Arabinose/metabolism , Binding Sites , Calorimetry, Differential Scanning , DNA/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Isopropyl Thiogalactoside/pharmacology , Kinetics , Lac Repressors/metabolism , Mutagenesis , Protein Engineering , Protein Structure, Tertiary , Temperature , Tryptophan/chemistry
19.
Anal Chem ; 85(9): 4761-9, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23614771

ABSTRACT

The ability to miniaturize biochemical assays in water-in-oil emulsion droplets allows a massive scale-down of reaction volumes, so that high-throughput experimentation can be performed more economically and more efficiently. Generating such droplets in compartment-on-demand (COD) platforms is the basis for rapid, automated screening of chemical and biological libraries with minimal volume consumption. Herein, we describe the implementation of such a COD platform to perform high precision nanoliter assays. The coupling of a COD platform to a droplet absorbance detection set-up results in a fully automated analytical system. Michaelis-Menten parameters of 4-nitrophenyl glucopyranoside hydrolysis by sweet almond ß-glucosidase can be generated based on 24 time-courses taken at different substrate concentrations with a total volume consumption of only 1.4 µL. Importantly, kinetic parameters can be derived in a fully unsupervised manner within 20 min: droplet production (5 min), initial reading of the droplet sequence (5 min), and droplet fusion to initiate the reaction and read-out over time (10 min). Similarly, the inhibition of the enzymatic reaction by conduritol B epoxide and 1-deoxynojirimycin was measured, and Ki values were determined. In both cases, the kinetic parameters obtained in droplets were identical within error to values obtained in titer plates, despite a >10(4)-fold volume reduction, from micro- to nanoliters.


Subject(s)
Nanotechnology , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/metabolism , Kinetics , Nanotechnology/instrumentation , Particle Size , Prunus/enzymology , Time Factors
20.
Methods Mol Biol ; 996: 269-86, 2013.
Article in English | MEDLINE | ID: mdl-23504430

ABSTRACT

Extreme miniaturization of biological and chemical reactions in pico- to nanoliter microdroplets is emerging as an experimental paradigm that enables more experiments to be carried out with much lower sample consumption, paving the way for high-throughput experiments. This review provides the protein scientist with an experimental framework for (a) formation of polydisperse droplets by emulsification or, alternatively, of monodisperse droplets using microfluidic devices; (b) construction of experimental rigs and microfluidic chips for this purpose; and (c) handling and analysis of droplets.


Subject(s)
Proteins/chemistry , Directed Molecular Evolution , Emulsions , Hexoses/chemistry , Microfluidic Analytical Techniques , Mineral Oil/chemistry , Nanotechnology , Particle Size , Poisson Distribution , Polysorbates/chemistry , Protein Biosynthesis , Protein Engineering , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...